Answer:
[tex]COD=2030\frac{mg}{L}[/tex]
Explanation:
Hello,
In this case, considering the given information the redox reaction is:
[tex]Fe^{+2}+Cr_2O_7^{-2}\rightarrow Fe^{+3}+Cr^{+3}[/tex]
Which properly balanced turns out:
[tex]Fe^{+2}\rightarrow Fe^{+3}+1e^-\\Cr^{+6}_2O_7^{-2}+14H^++6e^-\rightarrow 2Cr^{+3}+7H_2O\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \downarrow\\6Fe^{+2}+Cr_2O_7^{-2}+14H^+\rightarrow 6Fe^{+3}+2Cr^{+3}+7H_2O[/tex]
In such a way, one sees a 6 to 1 molar relationship between the standard iron (II) solution and the dichromate, therefore, by using the following equation it is possible to determine the oxygen as shown below:
[tex]n_{Fe^{+2}}=n_{Cr_2O_7^{-2}}[/tex]
Thus, the moles of iron (II) solution are:
[tex]n_{Fe^{+2}}=0.1511\frac{molFe^{+2}}{L_{sln}}*0.02684L_{sln}=0.00406molFe^{+2}[/tex]
Moreover, the moles of dichormate result:
[tex]n_{Cr_2O_7^{-2}}=0.00406molFe^{+2}*\frac{1molCr_2O_7^{-2}}{6molFe^{+2}}=6.76x10^{-4}}molCr_2O_7^{-2}[/tex]
Thereby, the volume of the sample is:
[tex]V_{sample}=\frac{n_{Cr_2O_7^{-2}}}{M_{Cr_2O_7^{-2}}}=\frac{6.76x10^{-4}molCr_2O_7^{-2}}{0.0181\frac{molCr_2O_7^{-2}}{L_{sln}} } =0.0373L_{sample}[/tex]
Finally, the chemical oxygen demand result:
[tex]COD=6.76x10^{-4}molCr_2O_7^{-2}*\frac{7molO}{1molCr_2O_7^{-2}}*\frac{16gO}{1molO}*\frac{1000mgO}{1gO}*\frac{1}{0.0373L_{sln}} \\COD=2030\frac{mg}{L}[/tex]
Best regards.