contestada

A 312 kg merry-go-round in the shape of a horizontal disk with a radius of 1.1 m is set in motion by wrapping a rope about the rim of the disk and pulling on the rope. How large a torque would have to be exerted to bring the merry-go-round from rest to an angular speed of 3.3 rad/s in 3.6 s?

Respuesta :

Answer:172.90 N-m

Explanation:

Given

mass of merry-go-round [tex]m=312\ kg[/tex]

radius of disk [tex]r=1.1\ m[/tex]

Final angular speed [tex]\omega _f=3.3\ rad/s[/tex]

time [tex]t=3.6\ s[/tex]

initial angular speed [tex]\omega _0=0\ rad/s[/tex]

using [tex]\omega _f=\omega _0+\alpha \cdot t[/tex]

where [tex]\omega _f[/tex]=final angular speed

[tex]\omega _i[/tex]=Initial angular speed

[tex]\alpha [/tex]=angular speed

[tex]t[/tex]=time

[tex]3.3=0+\alpha \times 3.6[/tex]

[tex]\alpha =0.916\ rad/s^2[/tex]

Torque can be written by

[tex]T=I\times \alpha [/tex]

where I=moment of Inertia

[tex]T=\frac{mR^2}{2}\times \alpha [/tex]

[tex]T=\frac{312\times 1.1^2}{2}\times 0.916[/tex]

[tex]T=172.90\ N-m[/tex]

ACCESS MORE