Answer:172.90 N-m
Explanation:
Given
mass of merry-go-round [tex]m=312\ kg[/tex]
radius of disk [tex]r=1.1\ m[/tex]
Final angular speed [tex]\omega _f=3.3\ rad/s[/tex]
time [tex]t=3.6\ s[/tex]
initial angular speed [tex]\omega _0=0\ rad/s[/tex]
using [tex]\omega _f=\omega _0+\alpha \cdot t[/tex]
where [tex]\omega _f[/tex]=final angular speed
[tex]\omega _i[/tex]=Initial angular speed
[tex]\alpha [/tex]=angular speed
[tex]t[/tex]=time
[tex]3.3=0+\alpha \times 3.6[/tex]
[tex]\alpha =0.916\ rad/s^2[/tex]
Torque can be written by
[tex]T=I\times \alpha [/tex]
where I=moment of Inertia
[tex]T=\frac{mR^2}{2}\times \alpha [/tex]
[tex]T=\frac{312\times 1.1^2}{2}\times 0.916[/tex]
[tex]T=172.90\ N-m[/tex]