Answer:
The reflectivity at the boundary of the two grains is [tex]2.9[/tex]×[tex]{10}^{-3}[/tex]
Step-by-step explanation:
Given :
Refractive index of one grains ([tex]n_{1}[/tex]) = 1.553
Refractive index of second grains ([tex]n_{2}[/tex]) = 1.544
According to the fresnel equation,
∴ general equation of refraction ( reflectivity ) [tex]r = \frac{ n_{1} cos\alpha _{i} - n_{2}cos_{t} }{ n_{1} cos\alpha _{i} + n_{2}cos_{t} }[/tex]
where [tex]cos\alpha _{i}[/tex] = incident angle, [tex]cos\alpha _{t}[/tex] = transmitted angle
but for normal incidence [tex]\alpha = 0[/tex]°
so our equation become,
⇒ [tex]r = \frac{n_{1} - n_{2} }{n_{1} + n_{2}}[/tex]
[tex]r = \frac{1.553 - 1.544}{1.553 + 1.544}[/tex]
[tex]r = \frac{0.009}{3.097}[/tex]
[tex]r = 2.9[/tex]×[tex]10^{-3}[/tex]
Therefor reflectivity at the boundary is given by [tex]r = 2.9[/tex]×[tex]10^{-3}[/tex].