Answer:
[tex]\lambda=3.99*10^{-7}m[/tex]
Explanation:
According to the law of conservation of energy, the energy of the absorbed photon must be equal to the binding energy of the electron plus the energy of the released electron:
[tex]E_p=E_b+E_r\\\frac{hc}{\lambda}=\frac{13.6eV}{n^2}+\frac{m_ev^2}{2}[/tex]
1 eV is equal to [tex]1.6*10^{-19}J[/tex], so:
[tex]13.6eV*\frac{1.6*10^{-19}J}{1eV}=2.18*10^{-18}J[/tex]
Solving for [tex]\lambda[/tex] and replacing the given values:
[tex]\lambda=\frac{hc}{\frac{2.18*10^{-18}J}{n^2}+\frac{m_ev^2}{2}}\\\lambda=\frac{6.63*10^{-134}J\cdot s(3*10^8\frac{m}{s})}{\frac{2.18*10^{-18}J}{3^2}+\frac{(9.11*10^{-31}kg)(7.5*10^5\frac{m}{s})^2}{2}}\\\lambda=3.99*10^{-7}m[/tex]