Answer:
a) [tex]\mu = 24,\sigma = 3.46[/tex]
b) Significantly low:
[tex]x < 17.08[/tex]
Significantly high:
[tex]x > 30.92[/tex]
c) 42 girls are significantly high.
Step-by-step explanation:
We are given the following in the question:
[tex]p = 0.5[/tex]
a) mean and the standard deviation for the numbers of girls in groups of 48 births
[tex]\mu = np = 48(0.5) = 24\\\sigma = \sqrt{np(1-p)} = \sqrt{48(0.5)(1-0.5)} = 3.46[/tex]
b) Range rule of thumb
Significantly low: According to this rule the observations lying below two standard deviation of mean is considered significantly low.
[tex]x = \mu - 2\sigma\\x = 24 - 2(3.46) = 17.08[/tex]
Significantly high: According to this rule the observations lying above two standard deviation of mean is considered significantly high.
[tex]x = \mu + 2\sigma\\x = 24 + 2(3.46) = 30.92[/tex]
c) Significance of 42 girls
[tex]42 > \mu + 2\sigma[/tex]
Since 42 is greater than 30.92, 42 girls are significantly high. Thus, the method is not significant.