Answer:
The unit cell edge length for the alloy is 0.405 nm
Explanation:
Given;
concentration of Ag, [tex]C_{Ag}[/tex] = 78 wt%
concentration of Pd, [tex]C_P_d[/tex] = 22 wt%
density of Ag = 10.49 g/cm³
density of Pd = 12.02 g/cm³
atomic weight of Ag, [tex]A_A_g[/tex] = 107.87 g/mol
atomic weight of iron, [tex]A_P_d[/tex] = 106.4 g/mol
Step 1: determine the average density of the alloy
[tex]\rho _{Avg.} = \frac{100}{\frac{C_A_g}{\rho _A_g} + \frac{C__{Pd}}{\rho _{Pd}} }[/tex]
[tex]\rho _{Avg.} = \frac{100}{\frac{78}{10.49} + \frac{22}{12.02} } = 10.79 \ g/cm^3[/tex]
Step 2: determine the average atomic weight of the alloy
[tex]A _{Avg.} = \frac{100}{\frac{C_v}{A _A_g} + \frac{C__{Pd}}{A _{Pd}} }[/tex]
[tex]A _{Avg.} = \frac{100}{\frac{78}{107.87} + \frac{22}{106.4} } = 107.54 \ g/mole[/tex]
Step 3: determine unit cell volume
[tex]V_c=\frac{nA_{avg.}}{\rho _{avg.} N_a}[/tex]
for a FCC crystal structure, there are 4 atoms per unit cell; n = 4
[tex]V_c=\frac{4*107.54}{ 10.79*6.022*10^{23}} = 6.620*10^{-23} \ cm^3/cell[/tex]
Step 4: determine the unit cell edge length
Vc = a³
[tex]a = V_c{^\frac{1}{3} }\\\\a = (6.620*10^{-23}}){^\frac{1}{3}}\\\\a = 4.05 *10^{-8} \ cm[/tex]= 0.405 nm
Therefore, the unit cell edge length for the alloy is 0.405 nm