Answer:
[tex] P(Y>1 \cap Y<4)[/tex]
And we can find this probability like this:
[tex] P(Y>1 \cap Y<4)= P(Y=2) +P(Y=3) [/tex]
And we can replace the values and we got:
[tex] P(Y>1 \cap Y<4)= P(Y=2) +P(Y=3)=0.429 +0.381 = 0.81[/tex]
Step-by-step explanation:
For this case we define the random variable Y as: the number of slices of cheesecake left on the platter after the first serving. And we have the following distribution for Y:
Y | 0 1 2 3 4
P(Y) | 0.005 0.114 0.429 0.381 0.071
And we want to find the following probability:
[tex] P(Y>1 \cap Y<4)[/tex]
And we can find this probability like this:
[tex] P(Y>1 \cap Y<4)= P(Y=2) +P(Y=3) [/tex]
And we can replace the values and we got:
[tex] P(Y>1 \cap Y<4)= P(Y=2) +P(Y=3)=0.429 +0.381 = 0.81[/tex]