A solid cylinder with a mass of 2.46 kg and a radius of 0.049 m starts from rest at a height of 4.80 m and rolls down a 24.3 ◦ slope. What is the translational speed of the cylinder when it leaves the incline? The acceleration of gravity is 9.81 m/s 2 .

Respuesta :

Answer:

[tex]v_{f}\approx 2.097\,\frac{m}{s}[/tex]

Explanation:

Let assume that the solid cylinder rolls down a frictionless incline. The translational speed can be found by using the Principle of Energy Conservation and the Work-Energy Theorem:

[tex]m_{cyl}\cdot g\cdot y_{o} = \frac{1}{2}\cdot m_{cyl} \left( 1+ \frac{1}{R}\right)\cdot v_{f}^{2}[/tex]

[tex]g\cdot y_{o} = \frac{1}{2}\cdot\left( 1+ \frac{1}{R}\right)\cdot v_{f}^{2}[/tex]

The translational speed is:

[tex]v_{f} = \sqrt{\frac{2\cdot g\cdot y_{o}}{\left(1 + \frac{1}{R} \right)}}[/tex]

[tex]v_{f} = \sqrt{\frac{2\cdot (9.807\,\frac{m}{s^{2}} )\cdot (4.80\,m)}{\left(1 + \frac{1}{0.049\,m} \right)} }[/tex]

[tex]v_{f}\approx 2.097\,\frac{m}{s}[/tex]

ACCESS MORE