Answer:
[tex]v_{f}\approx 2.097\,\frac{m}{s}[/tex]
Explanation:
Let assume that the solid cylinder rolls down a frictionless incline. The translational speed can be found by using the Principle of Energy Conservation and the Work-Energy Theorem:
[tex]m_{cyl}\cdot g\cdot y_{o} = \frac{1}{2}\cdot m_{cyl} \left( 1+ \frac{1}{R}\right)\cdot v_{f}^{2}[/tex]
[tex]g\cdot y_{o} = \frac{1}{2}\cdot\left( 1+ \frac{1}{R}\right)\cdot v_{f}^{2}[/tex]
The translational speed is:
[tex]v_{f} = \sqrt{\frac{2\cdot g\cdot y_{o}}{\left(1 + \frac{1}{R} \right)}}[/tex]
[tex]v_{f} = \sqrt{\frac{2\cdot (9.807\,\frac{m}{s^{2}} )\cdot (4.80\,m)}{\left(1 + \frac{1}{0.049\,m} \right)} }[/tex]
[tex]v_{f}\approx 2.097\,\frac{m}{s}[/tex]