Answer:0.161 m
Explanation:
Given
mass of cube [tex]m=0.49\ kg[/tex]
Spring constant [tex]k_1=606\ N/m[/tex]
compression in the spring [tex]x_1=0.1\ m[/tex]
When this cube is released then it will compress another spring of spring constant [tex]k_2=233\ N/m[/tex]
Conserving energy
[tex]\frac{1}{2}k_1x^2=\frac{1}{2}mv^2=\frac{1}{2}k_2x'^2[/tex]
[tex]\frac{x'}{x}=\sqrt{\frac{k_1}{k_2}}[/tex]
[tex]x'=0.1\times \sqrt{\frac{606}{233}}[/tex]
[tex]x'=0.1\times 1.61[/tex]
[tex]x'=0.161\ m[/tex]