​If, based on a sample size of 950​, a political candidate finds that 563 people would vote for him in a​ two-person race, what is the 99​% confidence interval for his expected proportion of the​ vote? Would he be confident of winning based on this​ poll?

Respuesta :

Answer:

The 99​% confidence interval for his expected proportion of the​ vote is (0.5516, 0.6336). Since the interval for the proportion is above 50%, he would be confident of winning based on the pool.

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].

For this problem, we have that:

[tex]n = 950, p = \frac{563}{950} = 0.5926[/tex]

99% confidence level

So [tex]\alpha = 0.01[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.01}{2} = 0.995[/tex], so [tex]Z = 2.575[/tex].

The lower limit of this interval is:

[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.5926 - 2.575\sqrt{\frac{0.5926*0.4074}{950}} = 0.5516[/tex]

The upper limit of this interval is:

[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.5926 + 2.575\sqrt{\frac{0.5926*0.4074}{950}} = 0.6336[/tex]

The 99​% confidence interval for his expected proportion of the​ vote is (0.5516, 0.6336). Since the interval for the proportion is above 50%, he would be confident of winning based on the pool.

ACCESS MORE