Answer:
[tex]6.65\times 10^5 m[/tex]
Explanation:
We are given that
Magnetic field=B=[tex]4\times 10^{-8} T[/tex]
[tex]v=2.7\times 10^7 m/s[/tex]
We have to find the height of proton from the surface of the Earth.
Mass of proton,[tex]m_p=1.67\times 10^{-27} kg[/tex]
Charge on proton,[tex]q=1.6\times 10^{-19} C[/tex]
Radius of Earth, r=[tex]6.38\times 10^6 m[/tex]
Centripetal force due to rotation of proton=[tex]\frac{mv^2}{r+h}[/tex]
Magnetic force,F=[tex]qvB[/tex]
[tex]\frac{mv^2}{r+h}=qvB[/tex]
[tex]\frac{mv}{r+h}=qB[/tex]
Substitute the values
[tex]\frac{1.67\times 10^{-27}\times (2.7\times 10^7)}{6.38\times 10^6+h}=1.6\times 10^{-19}\times 4\times 10^{-8}[/tex]
[tex]6.38\times10^6+h=\frac{1.67\times 10^{-27}\times 2.7\times 10^7}{1.6\times 10^{-19}\times 4\times 10^{-8}}[/tex]
[tex]6.38\times10^6+h=7.045\times 10^6[/tex]
[tex]h=7.045\times 10^6-6.38\times 10^6[/tex]
[tex]h=0.665\times 10^6=6.65\times 10^5 m[/tex]