Respuesta :
Answer:
The maximum height is 1.41 m.
Explanation:
Given that,
Mass of actor = 83.0 kg
Radius = 3.90 m
Mass of costar = 55.0 kg
We need to calculate the velocity of swing
Use loss in gravitation energy = gain in kinetic energy
[tex]mgh=\dfrac{1}{2}mv^2[/tex]
Put the value into the formula
[tex]83.0\times9.8\times3.90=\dfrac{1}{2}\times83.0\times v^2[/tex]
[tex]v^2=\dfrac{83.0\times9.8\times3.90\times2}{83.0}[/tex]
[tex]v=\sqrt{\dfrac{83.0\times9.8\times3.90\times2}{83.0}}[/tex]
[tex]v=8.74\ m/s[/tex]
We need to calculate the velocity of the system
Using conservation of momentum
[tex]mv=(m_{1}+m_{2})v'[/tex]
Put the value into the formula
[tex]83.0\times8.74=(83.0+55.0)\times v;[/tex]
[tex]v'=\dfrac{83.0\times8.74}{138}[/tex]
[tex]v'=5.25\ m/s[/tex]
We need to calculate the maximum height
Using formula of energy
Gain in gravitational energy = lost in kinetic energy
[tex]mgh=\dfrac{1}{2}mv'^2[/tex]
[tex]9.8\times h=\dfrac{1}{2}\times(5.25)^2[/tex]
[tex]h=\dfrac{5.25^2}{2\times9.8}[/tex]
[tex]h=1.41\ m[/tex]
Hence, The maximum height is 1.41 m.
Answer:
Explanation:
mass of actor, M = 83 kg
mass of costar, m = 55 kg
length, r = 3.9 m
let the speed of the actor is u before collision
By use of conservation of energy
mgh = 0.5 mu²
9.8 x 3.9 = 0.5 x u²
u = 8.74 m/s
Use conservation of momentum
M x u = ( M + m) x v
where v is the velocity after collision
83 x 8.74 = ( 83 + 55) x v
v = 5.26 m/s