The mayor of a town has proposed a plan for the annexation of a new community. A political study took a sample of 10001000 voters in the town and found that 56V% of the residents favored annexation. Using the data, a political strategist wants to test the claim that the percentage of residents who favor annexation is more than 53S%. Find the value of the test statistic. Round your answer to two decimal places.

Respuesta :

Answer:

Test statistics = 1.87

Step-by-step explanation:

We are given that a political study took a sample of 1000 voters in the town and found that 56% of the residents favored annexation.

And, a political strategist wants to test the claim that the percentage of residents who favor annexation is more than 53%, i.e;

Null Hypothesis, [tex]H_0[/tex] : p = 0.53 {means that the percentage of residents who favor annexation is 53%}

Alternate Hypothesis, [tex]H_1[/tex] : p > 0.53 {means that the percentage of residents who favor annexation is more than 53%}

The test statistics we will use here is;

                T.S. = [tex]\frac{\hat p -p}{\sqrt{\frac{\hat p(1- \hat p)}{n} } }[/tex] ~ N(0,1)

where, p = actual percentage of residents who favor annexation = 0.53

            [tex]\hat p[/tex] = percentage of residents who favor annexation in a sample of

                  1000 voters = 0.56

            n = sample of voters = 1000

So, Test statistics = [tex]\frac{0.56 -0.53}{\sqrt{\frac{0.56(1- 0.56)}{1000} } }[/tex]

                              = 1.87

Therefore, the value of test statistics is 1.87 .

ACCESS MORE
EDU ACCESS