Answer: Wavelength associated with the fifth line is 397 nm
Explanation:
[tex]E=\frac{hc}{\lambda}[/tex]
[tex]\lambda[/tex] = Wavelength of radiation
E= energy
For fifth line in the H atom spectrum in the balmer series will be from n= 2 to n=7.
Using Rydberg's Equation:
[tex]\frac{1}{\lambda}=R_H\left(\frac{1}{n_i^2}-\frac{1}{n_f^2} \right )\times Z^2[/tex]
Where,
[tex]\lambda[/tex] = Wavelength of radiation
[tex]R_H[/tex] = Rydberg's Constant =[tex]10973731.6m^{-1}[/tex]
[tex]n_f[/tex] = Higher energy level = 7
[tex]n_i[/tex]= Lower energy level = 2 (Balmer series)
Putting the values, in above equation, we get
[tex]\frac{1}{\lambda}=10973731.6\times \left(\frac{1}{2^2}-\frac{1}{7^2} \right )\times 1^2[/tex]
[tex]\frac{1}{\lambda}=2.52\times 10^{6}m[/tex]
[tex]\lambda}=3.97\times 10^{-7}m=397 nm[/tex] [tex]1nm=10^{-9}m[/tex]
Thus wavelength λ associated with the fifth line is 397 nm