Respuesta :
Answer:
[tex]r=\frac{ln(1.5)}{4}[/tex]
Explanation:
Given:
Total population after time (P) = 100% + 50% = 1 + 0.5 = 1.5
Starting population (p) = 100% = 1
Number of year (t) = 4 year
rate of growth = r
Computation:
Exponential growth function for population :
P = [tex]pe^{rt}[/tex]
1.5 = [tex]1\times e^{4\times r}[/tex]
1.5 = [tex]e^{4r}[/tex]
From taking log:
4r = ln(1.5)
[tex]r=\frac{ln(1.5)}{4}[/tex]