Answer:
that the angle must be increased to maintain the minimum time of discrimination due to the increase in the speed of sound in material
Explanation:
The direction of sound is detected by the difference in time of reception of each ear, the speed of the wave is
v = d / t
t = d / v
In air the velocity is v = 330 m / s, let's use trigonometry
Cos 3 = d / L
L = d / cos 3
The difference in distance is
Δd = d - d / cos 3 = d (1- 1 / cos3)
t = Δd / 330
When the animal is in the water the speed of sound is
v = 1540 m / s
So time is
t' = Δd ’/ 1540
t ’= Dd’ / 4.67 330
So if t = t’ is the minimum response time, the distance must be increased
Δd ’= 4.6 Δd
1-1 / cos θ = 4.6 (1- 1 / cos 3) = -4.6 0.00137 = -0.00631
1 + 0.0063 = 1 / cos θ
1.00631 = 1 / cos θ
Cos θ = 1 / 1.00631
Tea = 6.5
We see that the angle must be increased to maintain the minimum time of discrimination due to the increase in the speed of sound in material