Respuesta :
Answer:
0.8151 is the probability that the weight will be less than 4293 grams.
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 4004 grams
Variance = 103,684
[tex]\sigma = \sqrt{103684} = 322[/tex]
We are given that the distribution of weight of newborn baby is a bell shaped distribution that is a normal distribution.
Formula:
[tex]z_{score} = \displaystyle\frac{x-\mu}{\sigma}[/tex]
P(weight will be less than 4293 grams)
P(x < 4293)
[tex]P( x < 4293) \\\\= P( z < \displaystyle\frac{4293 - 4004}{322}) \\\\= P(z < 0.8975)[/tex]
Calculation the value from standard normal z table, we have,
[tex]P(x < 4293) =0.8151 = 81.51\%[/tex]
0.8151 is the probability that the weight will be less than 4293 grams.
Answer:
Probability that the weight will be less than 4293 grams is 0.8133.
Step-by-step explanation:
We are given that weights of newborn baby boys born at a local hospital are believed to have a normal distribution with a mean weight of 4004 grams and a variance of 103,684.
Let X = weight of newborn baby boys
So, X ~ N([tex]\mu =4004,\sigma^{2}=322^{2}[/tex])
The z score probability distribution is given by;
Z = [tex]\frac{X-\mu}{\sigma}[/tex] ~ N(0,1)
where, [tex]\mu[/tex] = population mean
[tex]\sigma[/tex] = population standard deviation
(a) Probability that weight will be less than 4293 grams is given by = P(X < 4293 grams)
P(X < 4293) = P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{4293-4004}{322 }[/tex] ) = P(Z < 0.89) = 0.8133
Therefore, if a newborn baby boy born at the local hospital is randomly selected, probability that the weight will be less than 4293 grams is 0.8133.
