Answer:
(a) 19.25 N-m
(b) 25.67 N-m
(c) 0 N-m
Explanation:
Given:
Length of the pedal arm (L) = 0.177 m
Downward force [tex](|\vec{F}|)[/tex] = 145 N
Magnitude of torque is given by the formula:
[tex]T=FL\sin\theta[/tex]
Where, [tex]\theta\to angle\ between\ F\ and\ L[/tex]
(a)
Given:
[tex]\theta=48.6[/tex]°
Therefore, torque is given as:
[tex]T=FL\sin\theta\\\\T=(145\ N)(0.177\ m)(\sin(48.6))\\\\T=19.25\ Nm[/tex]
Therefore, the torque is 19.25 N-m.
(b)
Given:
[tex]\theta=90[/tex]°
Therefore, torque is given as:
[tex]T=FL\sin\theta\\\\T=(145\ N)(0.177\ m)(\sin(90))\\\\T=25.67\ Nm[/tex]
Therefore, the torque is 25.67 N-m.
(c)
Given:
[tex]\theta=180[/tex]°
Therefore, torque is given as:
[tex]T=FL\sin\theta\\\\T=(145\ N)(0.177\ m)(\sin(180))\\\\T=0\ Nm[/tex]
Therefore, the torque is 0 N-m.