Answer:
The factor form is: [tex]\quad \left(3x-5y\right)^2[/tex]
Step-by-step explanation:
When the factor of the expression is required to be found, then take the common terms, or can be done by using the standard formulas, for example, [tex]\left(a-b\right)^2=a^2-2ab+b^2[/tex]
Now, here we have to find the factor of the expression:
[tex]9x^2-30xy+25y^2\\=\left(3x\right)^2-2\cdot \:3x\cdot \:5y+\left(5y\right)^2\\[/tex]
So now, we can see that this is the perfect square form of:
[tex]\left(a-b\right)^2=a^2-2ab+b^2[/tex]
So the given expression is factorized as follows:
[tex]\left(3x\right)^2-2\cdot \:3x\cdot \:5y+\left(5y\right)^2=\left(3x-5y\right)^2\\[/tex]
Thus the factored form is:
[tex]9x^2-30xy+25y^2 = \quad \left(3x-5y\right)^2[/tex]