Respuesta :
Answer:
Option B) (197773, 228207)
Step-by-step explanation:
We are given the following in the question:
Sample mean, [tex]\bar{x}[/tex] = 212990
Sample size, n = 6
Alpha, α = 0.05
Sample standard deviation = 14500
95% Confidence interval:
[tex]\bar{x} \pm t_{critical}\displaystyle\frac{s}{\sqrt{n}}[/tex]
Putting the values, we get,
[tex]t_{critical}\text{ at degree of freedom 5 and}~\alpha_{0.05} = \pm 2.5705[/tex]
[tex]212990 \pm 2.5705(\dfrac{14500}{\sqrt{6}} ) \\\\= 212990 \pm 15216.33 \\= (197773.67 ,228206.33)\\\approx (197773, 228207)[/tex]
Option B) (197773, 228207)
Using the t-distribution, it is found that the 95% confidence interval for the average price of a home in Gainesville of this size is (197773, 228207).
The first step is finding the number of degrees of freedom, which is the sample size subtracted by 1, so df = 6 - 1 = 5.
Now, we look at the t-table for the critical value for a 95% confidence interval with 5 df, which is t = 2.5706.
The margin of error is:
[tex]M = t\frac{s}{\sqrt{n}}[/tex]
For this problem, [tex]s = 14500, n = 6[/tex], thus:
[tex]M = 2.5706\frac{14500}{\sqrt{6}}[/tex]
[tex]M = 15217[/tex]
The confidence interval is:
[tex]\overline{x} \pm M[/tex]
For this problem, [tex]\overline{x} = 212990[/tex], then:
[tex]\overline{x} - M = 212990 - 15217 = 197773[/tex]
[tex]\overline{x} + M = 212990 + 15217 = 228207[/tex]
The correct option is (197773, 228207).
A similar problem is given at https://brainly.com/question/15872108