Respuesta :
Answer:
[tex] P(X <9) [/tex]
And we can use the cumulative distribution function given by:
[tex] F(X) = \frac{x-a}{b-a}, a\leq X \leq b[/tex]
And using this we got:
[tex] P(X <9) = F(9) = \frac{9-3}{11-3}= 0.75[/tex]
Step-by-step explanation:
For this case we assume that X= represent the waiting times and for this case we have the following distribution:
[tex] X \sim Unif (a= 3, b =11)[/tex]
And the expected value is given by:
[tex]\mu= E(X) = \frac{a+b}{2}= \frac{3+11}{2}=7[/tex]
And the variance is given by:
[tex] Var(X) \sigma^2 = \frac{(b-a)^2}{12} = \frac{(11-3)^2}{12} = 5.333[/tex]
And we can find the deviation like this:
[tex] Sd(X) = \sqrt{5.333}= 2.309[/tex]
And we want to find this probability:
[tex] P(X <9) [/tex]
And we can use the cumulative distribution function given by:
[tex] F(X) = \frac{x-a}{b-a}, a\leq X \leq b[/tex]
And using this we got:
[tex] P(X <9) = F(9) = \frac{9-3}{11-3}= 0.75[/tex]
The probability that a randomly selected Starbucks drive-through customer in the US waits at most 9 minutes to receive their order is 0.75.
What is uniform distribution?
Uniform distributions are probability distributions in which all events are equally likely to occur.
Let's assume that X represents the waiting time.
As the distribution is the uniform distribution, we can write a =3 and b =11
Now, the expected value can be written as,
[tex]\mu = E(X) = \dfrac{a+b}{2} = \dfrac{3+11}{2}= 7[/tex]
the variance of the distribution can be written as,
[tex]Var(X) = \sigma^2 = \dfrac{(b-a)^2}{12} = \dfrac{(11-3)^2}{12} =5.34[/tex]
And, the standard deviation can be written as,
[tex]\sigma = \sqrt{5.34}=2.309[/tex]
In order to calculate the probability, we will use the cumulative distribution function. The cumulative function is given by the formula,
[tex]F(X) = \dfrac{x-a}{b-a}, a\leq X\leq b[/tex]
Using the function we can get the probability as,
[tex]F(X < 9) = F(9) = \dfrac{9-3}{11-3} = 0.75[/tex]
Hence, the probability that a randomly selected Starbucks drive-through customer in the US waits at most 9 minutes to receive their order is 0.75.
Learn more about Uniform Distribution:
https://brainly.com/question/10658260