Respuesta :
Answer:
[tex]\omega=0.24\ rad.s^{-1}[/tex]
Explanation:
Given:
mass of person, [tex]m=36\ kg[/tex]
mass of merry go-round, [tex]M=300\ kg[/tex]
radius of merry go-round, [tex]R=2\ m[/tex]
velocity of the person running, [tex]v=4\ m.s^{-1}[/tex]
We consider merry go-round as a ring:
Now the moment of inertial of the ring is given as,
[tex]I=M.R^2[/tex]
[tex]I=300\times 2^2[/tex]
[tex]I=1200\ kg.m^{-2}[/tex]
Moment of inertia of the person considering as a point mass:
[tex]I_p=m.R^2[/tex]
[tex]I_p=36\times 2^2[/tex]
[tex]I_p=144\ kg.m^2[/tex]
Now according to the conservation of angular momentum:
[tex]I.\omega=I_p.\omega_p[/tex]
where:
[tex]\omega =[/tex] angular velocity of the merry-go-round
[tex]\omega_p=[/tex] angular velocity of the person running
[tex]1200\times \omega=144\times \frac{v}{R}[/tex]
[tex]\omega=\frac{144}{1200} \times \frac{4}{2}[/tex]
[tex]\omega=0.24\ rad.s^{-1}[/tex]
In this case, the final angular speed of the merry-go-round is - 0.24 rad/s
Given:
m = 36 kg
M = 300 kg
R = 2 m
v = 4 m/s
Angular speed:
- rate of velocity at which an object or a particle is rotating around a center or a specific point in a given time period
- Let the final angular speed of merry-go-round is ω.
- Moment of inertia of the merry go round,
I = M x R²
= 300 x 2 x 2
= 1200 kgm²
2. Moment of inertia of Joey
I’ = m x R²
= 36 x 2 x 2
= 144 kgm²
3. Use conservation of angular momentum
I x ω =
1200 x ω =
ω = 0.24 rad/s
Thus, the final angular speed of the merry-go-round is - 0.24 rad/s.
Learn more:
https://brainly.com/question/20432894