Answer with Step-by-step explanation:
LHS
[tex]tan^{-1}x+tan^{-1}y[/tex]
[tex]u=tan^{-1}x, v=tan^{-1}y[/tex]
[tex]tan(u+v)=\frac{tanu+tanv}{1-tanutanv}[/tex]
By using the formula
[tex]tan(x+y)=\frac{tanx+tany}{1-tanxtany}[/tex]
Substitute the values
[tex]tan(tan^{-1}x+tan^{-1}y)=\frac{tan(tan^{-1}x)+tan(tan^{-1}y)}{1-tan(tan^{-1}x)tan(tan^{-1}y)}[/tex]
[tex]tan(tan^{-1}x+tan^{-1}y)=\frac{x+y}{1-xy}[/tex]
[tex]tan^{-1}x+tan^{-1}y=tan^{-1}(\frac{x+y}{1-xy})[/tex]
Hence, proved.