Explanation:
For equilibrium, [tex]\sum M = 0[/tex].
So, [tex]8 m \times mg - (10 m) T_{1}[/tex] = 0
[tex]T_{1} = \frac{8 \times mg}{10}[/tex]
= [tex]\frac{8 \times 90 \times 9.8}{10}[/tex]
= 705.6 N
Also, for equilibrium [tex]\sum F_{y}[/tex] = 0
[tex]T_{1} + T_{2} - mg[/tex] = 0
or, [tex]T_{2} = mg - T_{1}[/tex]
= [tex]90 \times 9.8 - 705.6[/tex]
= 176.4 N
Thus, we can conclude that the tension in the first rope is 176.4 N.