A geostationary communications satellite orbits the earth directly above the equator at an altitude of 36800 km. Calculate the time it would take a cell phone signal to travel from a point on the equator to the satellite and back.

Respuesta :

Answer:

0.24898 seconds

Explanation:

v = Speed of light = [tex]3\times 10^8\ m/s[/tex]

[tex]R_e[/tex] = Radius of Earth = 6371000 m

[tex]R_s[/tex] = Radius of satellite = 36800 km

Distance to the satellite from the surface

[tex]R=\sqrt{R_e^2+R_s^2}\\\Rightarrow R=\sqrt{6371000^2+36800000^2}\\\Rightarrow R=37347418.13\ m[/tex]

Distance the signal will travell is two times

[tex]d=37347418.13+37347418.13=74694836.26\ m[/tex]

Time is given by

[tex]T=\dfrac{d}{v}\\\Rightarrow T=\dfrac{74694836.26}{3\times 10^8}\\\Rightarrow T=0.24898\ s[/tex]

The time taken is 0.24898 seconds

The time taken to travel will be "0.24898 seconds".

Given:

  • Speed of light, [tex]v = 3\times 10^8 \ m/s[/tex]
  • Radius of earth, [tex]R_e = 6371000 \ m[/tex]
  • Radius of satellite, [tex]R_s = 36800 \ km[/tex]

Now,

From the surface, distance to satellite will be:

→ [tex]R = \sqrt{R_e^2+R_s^2}[/tex]

      [tex]= \sqrt{(6371000)^2+(36800000)^2}[/tex]

      [tex]= 37347418.13 \ m[/tex]

The signal travel in two time will be:

→ [tex]d = 2\times 37347418.13[/tex]

     [tex]= 74694836.26 \ m[/tex]

hence,

The time will be:

→ [tex]Time = \frac{distance}{speed}[/tex]

By substituting the values, we get

            [tex]= \frac{74694836.26}{3\times 10^8}[/tex]

            [tex]= 0.24898 \ s[/tex]

Thus the above response is correct.      

Learn more about satellite here:

https://brainly.com/question/17153113

ACCESS MORE