Respuesta :
Answer:
(a). The value of temperature at turbine exit = 687.64 K
(b). The rate of entropy generation for this process = [tex]S_{gen}[/tex] = 0.3157 [tex]\frac{KJ}{Kg k}[/tex]
Explanation:
Pressure at inlet [tex]P_{1}[/tex] = 2.5 M pa
Temperature [tex]T_{1}[/tex] = 450 °c = 723 K
Velocity at inlet [tex]V_{1}[/tex] = 55 [tex]\frac{m}{sec}[/tex]
Pressure at exit [tex]P_{2}[/tex] = 1 M pa
Velocity at exit [tex]V_{2}[/tex] = 390 [tex]\frac{m}{sec}[/tex]
Value of specific heat for steam = 2.108 [tex]\frac{KJ}{Kg k}[/tex]
(a). Apply steady flow energy equation for adiabatic nozzle
⇒ [tex]h_{1}[/tex] + [tex]\frac{V_{1} ^{2} }{2000}[/tex] = [tex]h_{2}[/tex] + [tex]\frac{V_{2} ^{2} }{2000}[/tex] ----------- ( 1 )
⇒ [tex]h_{2}[/tex] - [tex]h_{1}[/tex] = [tex]\frac{V_{1} ^{2} }{2000}[/tex] - [tex]\frac{V_{2} ^{2} }{2000}[/tex]
⇒ [tex]C_{p}[/tex] ( [tex]T_{2}[/tex] - [tex]T_{1}[/tex] ) = [tex]\frac{V_{1} ^{2} }{2000}[/tex] - [tex]\frac{V_{2} ^{2} }{2000}[/tex]
⇒ 2.108 ( [tex]T_{2}[/tex] - 723 ) = [tex]\frac{55 ^{2} }{2000}[/tex] - [tex]\frac{390 ^{2} }{2000}[/tex]
⇒ 2.108 ( [tex]T_{2}[/tex] - 723 ) = - 74.53
⇒ ( [tex]T_{2}[/tex] - 723 ) = - 35.36
⇒ [tex]T_{2}[/tex] = 687.64 K
This is the value of temperature at turbine exit.
(b). Rate of entropy generation for this process is given by
[tex]S_{gen}[/tex] = [tex]C_{p}[/tex] [tex]log_{e}[/tex] [tex]\frac{T_{2} }{T_{1} }[/tex] - R [tex]log_{e}[/tex] [tex]\frac{P_{2} }{P_{1} }[/tex]
Put all the values in above equation we get
⇒ [tex]S_{gen}[/tex] = 2.108 [tex]log_{e}[/tex] [tex]\frac{687.64}{723}[/tex] - 0.46 [tex]log_{e}[/tex] [tex]\frac{1}{2.5}[/tex]
⇒ [tex]S_{gen}[/tex] = - 0.1057 + 0.4214
⇒ [tex]S_{gen}[/tex] = 0.3157 [tex]\frac{KJ}{Kg k}[/tex]
This is the value of entropy generation for this process.