1. Express 4 factors of -20: (-20%)(-2)(-20)(-28)
2. Expand the expression:
-2.-2.-2.-2..0.0.
3. Simplify to the exponential form: (-2)4. (4574
4. Evaluate the base 2 power: 16. (054
5. Apply the power of a power: 162"
What is the value of x in the simplified power? x=

1 Express 4 factors of 20 2022028 2 Expand the expression 222200 3 Simplify to the exponential form 24 4574 4 Evaluate the base 2 power 16 054 5 Apply the powe class=

Respuesta :

The value of x in the simplified power is 20.

Solution:

Given expression: [tex]\left(-2 d^{5}\right)^{4}[/tex]

Step 1: Express 4 factors of [tex]-2 d^{5}[/tex]

[tex]\left(-2 d^{5}\right)\left(-2 d^{5}\right)\left(-2 d^{5}\right)\left(-2 d^{5}\right)[/tex]

Step 2: Expand the expression

[tex]-2 \cdot-2 \cdot-2 \cdot-2 \cdot d^{5} \cdot d^{5} \cdot d^{5} \cdot d^{5}[/tex]

Step 3: Simplify to the exponential form

There four -2 terms and four [tex]d^5[/tex] terms.

[tex](-2)^{4} \cdot\left(d^{5}\right)^{4}[/tex]

Step 4: Evaluate the base 2 power.

[tex](-2)^{4}=16[/tex]

[tex](-2)^{4} \cdot\left(d^{5}\right)^{4}=16 \cdot\left(d^{5}\right)^{4}[/tex]

Step 5: Apply the power of a power.

Using exponent rule: [tex](a^m)^n=a^{mn}[/tex]

So that [tex]\left(d^{5}\right)^{4}=d^{5\times4}=d^{20}[/tex]

[tex]16 \cdot\left(d^{5}\right)^{4}=16d^{20}[/tex]

[tex]16 d^{x}=16 d^{20}[/tex]

x = 20

The value of x in the simplified power is 20.

ACCESS MORE