The value of x in the simplified power is 20.
Solution:
Given expression: [tex]\left(-2 d^{5}\right)^{4}[/tex]
Step 1: Express 4 factors of [tex]-2 d^{5}[/tex]
[tex]\left(-2 d^{5}\right)\left(-2 d^{5}\right)\left(-2 d^{5}\right)\left(-2 d^{5}\right)[/tex]
Step 2: Expand the expression
[tex]-2 \cdot-2 \cdot-2 \cdot-2 \cdot d^{5} \cdot d^{5} \cdot d^{5} \cdot d^{5}[/tex]
Step 3: Simplify to the exponential form
There four -2 terms and four [tex]d^5[/tex] terms.
[tex](-2)^{4} \cdot\left(d^{5}\right)^{4}[/tex]
Step 4: Evaluate the base 2 power.
[tex](-2)^{4}=16[/tex]
[tex](-2)^{4} \cdot\left(d^{5}\right)^{4}=16 \cdot\left(d^{5}\right)^{4}[/tex]
Step 5: Apply the power of a power.
Using exponent rule: [tex](a^m)^n=a^{mn}[/tex]
So that [tex]\left(d^{5}\right)^{4}=d^{5\times4}=d^{20}[/tex]
[tex]16 \cdot\left(d^{5}\right)^{4}=16d^{20}[/tex]
[tex]16 d^{x}=16 d^{20}[/tex]
⇒ x = 20
The value of x in the simplified power is 20.