A cannon with a muzzle speed of 1 000 m/s is used to start an avalanche on a mountain slope. The target is 2 000 m from the cannon horizontally and 800 m above the cannon. At what angle, above the horizontal, should the cannon be fired

Respuesta :

Answer:

∅ = 89.44°

Explanation:

In situations like this air resistance are usually been neglected thereby making g= 9.81 m/[tex]s^{2}[/tex]

Bring out the given parameters from the question:

Initial Velocity ([tex]V_{1}[/tex]) = 1000 m/s

Target distance (d) = 2000 m

Target height (h) =  800 m

Projection angle ∅ = ?

Horizontal distance = [tex]V_{1x}[/tex]tcos ∅     .......................... Equation 1

where [tex]V_{1x}[/tex] = velocity in the X - direction

           t = Time taken

Vertical Distance = y = [tex]V_{1y}[/tex] t - [tex]\frac{1}{2}[/tex]g[tex]t^{2}[/tex]        ................... Equation 2

Where   [tex]V_{1y}[/tex] = Velocity in the Y- direction

              t  = Time taken

[tex]V_{1y}[/tex] = [tex]V_{1}[/tex]sin∅

Making time (t) subject of the formula in Equation 1

                    t = d/([tex]V_{1x}[/tex]cos ∅)

                      t = [tex]\frac{2000}{1000coso}[/tex] = [tex]\frac{2}{cos0}[/tex]  =    [tex]\frac{d}{cos o}[/tex]             ...................Equation 3

substituting equation 3 into equation 2

Vertical Distance = d = [tex]V_{1y}[/tex] [tex]\frac{d}{cos o}[/tex] - [tex]\frac{1}{2}[/tex]g[tex]\frac{2}{cos0} ^{2}[/tex]

                                  Vertical Distance = h = sin∅ [tex]\frac{d}{cos o}[/tex] - [tex]\frac{1}{2}[/tex]g[tex]\frac{2}{cos0} ^{2}[/tex]

  Vertical Distance = h = dtan∅   - [tex]\frac{1}{2}[/tex]g[tex]\frac{2}{cos0} ^{2}[/tex]

  Applying geometry

                              [tex]\frac{1}{cos o}[/tex] = [tex]tan^{2} o[/tex] + 1

  Vertical Distance = h = d tan∅   - 2 g ([tex]tan^{2} o[/tex] + 1)

               substituting the given parameters

               800 = 2000 tan ∅ - 2 (9.81)( [tex]tan^{2} o[/tex] + 1)

              800 = 2000 tan ∅ - 19.6( [tex]tan^{2} o[/tex] + 1)  Equation 4

Replacing tan ∅ = Q     .....................Equation 5

In order to get a quadratic equation that can be easily solve.

            800 = 2000 Q - 19.6[tex]Q^{2}[/tex] + 19.6

Rearranging 19.6[tex]Q^{2}[/tex] - 2000 Q + 780.4 = 0

                    [tex]Q_{1}[/tex] = 101.6291

                      [tex]Q_{2}[/tex] = 0.411

    Inserting the value of Q Into Equation 5

                 tan ∅ = 101.63    or tan ∅ = 0.4114

Taking the Tan inverse of each value of Q

                  ∅ = 89.44°     ∅ = 22.37°

             

ACCESS MORE