Answer:
a) Expected value = 20.4, Standard error = 0.085
b) Yes
c) Expected value = 27.2, Standard error = 0.073
d) Yes
Step-by-step explanation:
We are given the following in the question:
Population proportion, p = 0.68
a) expected value and the standard error
Sample size, n = 30
[tex]E(x) = np = 30\times 0.68 = 20.4[/tex]
[tex]\text{Standard error} = \sqrt{\dfrac{p(1-p)}{n}} = \sqrt{\dfrac{0.68(1-0.68)}{30}} = 0.085[/tex]
b) Yes it is appropriate to use normal approximation as:
[tex]np = 30\times 0.68 = 20.4 > 5\\n(1-p) = 30\times (1-0.68) = 9.6 > 5[/tex]
c) expected value and the standard error
Sample size, n = 40
[tex]E(x) = np = 40\times 0.68 = 27.2[/tex]
[tex]\text{Standard error} = \sqrt{\dfrac{p(1-p)}{n}} = \sqrt{\dfrac{0.68(1-0.68)}{40}} = 0.0773[/tex]
b) Yes it is appropriate to use normal approximation as:
[tex]np = 40\times 0.68 = 27.2> 5\\n(1-p) = 40\times (1-0.68) = 12.8 > 5[/tex]