Explanation:
Given data:
Area A = 10 cm×2 cm = 20×10⁻⁴ m²
Distance d between the plates = 1 mm = 1×10⁻³m
Voltage of the battery is emf = 100 V
Resistance = 1025 ohm
Solution:
In RC circuit, the voltage between the plates is related to time t. Initially the voltage is equal to that of battery V₀ = emf = 100V. But After time t the resistance and capacitor changes it and the final voltage is V that is given by
[tex]V = V_{0}(1-e^{\frac{-t}{RC} } )\\\frac{V}{V_{0} } = 1-e(^{\frac{-t}{RC} }) \\e^{\frac{-t}{RC} } = 1- \frac{V}{V_{0} }[/tex]
Taking natural log on both sides,
[tex]e^{\frac{-t}{RC} } = 1- \frac{V}{V_{0} } \\\frac{-t}{RC} = ln(1-\frac{V}{V_{0} } )\\t = -RCln(1 - \frac{V}{V_{0} })[/tex]
[tex]t = -RC ln (1-\frac{V}{V_{0} })[/tex] (1)
Now we can calculate the capacitance by using the area of the plates.
C = ε₀A/d
= [tex]\frac{(8.85*10^{-12))} (20*10^{-4}) }{1*10^{-3} }[/tex]
= 18×10⁻¹²F
Now we can get the time when the voltage drop from 100 to 55 V by putting the values of C, V₀, V and R in the equation (1)
[tex]t = -RC ln (1-\frac{V}{V_{0} })[/tex]
= -(1025Ω)(18×10⁻¹² F) ln( 1 - 55/100)
= 15×10⁻⁹s
= 15 ns