Respuesta :
To solve this problem we will apply the concepts related to the electric field in a ring. This concept is already standardized in the following mathematical expression, which relates the coulomb constant, the distance to the axis, the distance of the two points. Mathematically it is described as,
[tex]E = \frac{k_exq}{(x^2+r^2)^{(3/2)}} \hat{i}[/tex]
Here,
[tex]k_e[/tex] = Coulomb constant
q = Charge
x = Distance to the axis
r = Distance between the charges
Our values are given as,
[tex]r = 10.0cm = 10*10^{-2} m[/tex]
[tex]q = 75\mu C = 75*10^{-6} C[/tex]
[tex]x_a = 1.00cm[/tex]
[tex]x_b = 5.00cm[/tex]
[tex]x_c = 30cm[/tex]
[tex]x_d = 100cm[/tex]
So applying this to our 4 distances, we have
PART A)
[tex]E_a = \frac{(9*10^9)(1.00*10^{-2})(75*10^{-6})}{((1.00*10^{-2})^2+(10*10^{-2})^2)^{(3/2)}} \hat{i}[/tex]
[tex]E_a = 6.64*10^6N/C \hat{i}[/tex]
PART B)
[tex]E_b = \frac{(9*10^9)(5.00*10^{-2})(75*10^{-6})}{((5.00*10^{-2})^2+(10*10^{-2})^2)^{(3/2)}} \hat{i}[/tex]
[tex]E_b = 24.1*10^6N/C \hat{i}[/tex]
PART C)
[tex]E_c = \frac{(9*10^9)(30.00*10^{-2})(75*10^{-6})}{((30.00*10^{-2})^2+(10*10^{-2})^2)^{(3/2)}} \hat{i}[/tex]
[tex]E_c = 6.39*10^6N/C \hat{i}[/tex]
PART D)
[tex]E_d = \frac{(9*10^9)(100.00*10^{-2})(75*10^{-6})}{((100.00*10^{-2})^2+(10*10^{-2})^2)^{(3/2)}} \hat{i}[/tex]
[tex]E_d = 0.664*10^6N/C \hat{i}[/tex]