Respuesta :

The formula [tex]3(4^{n-1})[/tex] represents the geometric sequence.

Step-by-step explanation:

Step 1:

The value of [tex]a_{n}[/tex] is dependent on the value of n.

So n is independent while [tex]a_{n}[/tex] is dependent on n i.e. the value of [tex]a_{n}[/tex]depends on the value of n.

Step 2:

We substitute the values of n in the functions to check which function satisfies the values of [tex]a_{n}[/tex].

If [tex]n = 4, a_{n} = -4(3)^{n-1} = -4 (3^{3}) = -108.[/tex] This does not equal the value of [tex]a_{n}[/tex].

If [tex]n = 4, a_{n} = 4(3)^{n-1} =-4 (3^{3}) = 108.[/tex] This does not equal the value of [tex]a_{n}[/tex].

If [tex]n = 4, a_{n} =3(-4)^{n-1} = 3 (-4^{3}) = -192.[/tex] This does not equal the value of [tex]a_{n}[/tex].

If [tex]n = 4, a_{n} =3(4)^{n-1} = 3 (4^{3}) = 192.[/tex] This equals the value of [tex]a_{n}[/tex].

So the fourth formula represents the geometric sequence.

ACCESS MORE
EDU ACCESS
Universidad de Mexico