The number of errors in a textbook follow a Poisson distribution with a mean of 0.03 errors per page. What is the probability that there are 3 or less errors in 100 pages? Round your answer to four decimal places (e.g. 98.7654).

Respuesta :

Answer:

Therefore the required probability is 0.6472.

Step-by-step explanation:

Poisson distribution: A Poisson distribution is discrete distribution.

Let X be a discrete variable the number of event. Let λ be the mean of X.

Then the probability of k event is

[tex]P(X=k)=\frac{\lambda^ke^{-\lambda}}{k!}[/tex]

Here mean of each page is =0.03

Mean of 100 pages = (0.03×100)= 3

λ = 3

The required probability

P(X≤3)  

= P(X=0)+P(X=1)+P(X=2)+P(X=3)

[tex]=\frac{3^0e^{-3}}{0!}[/tex] [tex]+\frac{3^1e^{-3}}{1!}[/tex][tex]+\frac{3^2e^{-3}}{2!}[/tex][tex]+\frac{3^3e^{-3}}{3!}[/tex]

[tex]=e^{-3}(1+3+\frac{9}{2}+\frac{27}{6})[/tex]

[tex]=e^{-3}(13)[/tex]

≈ 0.6472

Therefore the required probability is 0.6472

ACCESS MORE