[tex]W = K[ {\frac{1}{3} - \frac{1}{\sqrt{38} } ][/tex]
Explanation:
The parametric representation of a line segment joining the points (a,b,c) and (l,m,n) is
r(t) = (1-t) . (a,b,c) + t . (l, m, n) where t ∈ |0, 1|
So, the parametric representation of a line segment joining the points (3,0,0) and (3,2,5) is
r(t) = (1 - t) . (3,0,0) + t . (3,2,5) where t ∈ |0, 1|
r(t) = (3(1 - t), 0, 0) + (3t, 2t, 5t) where t ∈ |0, 1|
r(t) = (3, 2t, 5t)
Given:
[tex]F(x, y, z) = \frac{Kr}{|r|^3} \\\\F(x, y, z) = \frac{K}{(x^2 + y^2 + z^2)^3^/^2} (x, y, z)\\\\F(r(t)) = \frac{K}{(3^2 + (2t)^2 + (5t)^2)^3^/^2} (3, 2t, 5t)\\\\F(r(t)) = \frac{K}{(9 + 29t^2)^3^/^2} (3, 2t, 5t)[/tex]
dr = (0, 2, 5) dt
[tex]Work = \int\limits^1_0 {F} \, dr[/tex]
[tex]W = \int\limits^1_0 {\frac{K}{(9 + 29t^2)^3^/^2} } (3, 2t, 5t) . (0, 2, 5)\, dt\\ \\ = \int\limits^1_0 {\frac{K ( 4t + 25t)}{(9 + 29t^2)^3^/^2} } \, dt\\\\\\[/tex]
[tex]W = \frac{1}{2}\int\limits^1_0 {\frac{K(29t)}{(9 + 29t^2)^3^/^2} } \, dt \\ \\[/tex]
Substitute = 9 + 29t² = u, 92tdt = du
Limit changes from 0→1 to 9 → 38
[tex]W = \frac{K}{2} \int\limits^3_9 {\frac{du}{u^3^/^2} } \,\\\\[/tex]
On solving this, we get:
[tex]W = K[ {\frac{1}{3} - \frac{1}{\sqrt{38} } ][/tex]
Therefore, work done is [tex]W = K[ {\frac{1}{3} - \frac{1}{\sqrt{38} } ][/tex]