Answer:
The value of the maximum length of a surface flaw that is possible without fracture a = 1.02 × [tex]10^{-11}[/tex] mm
Explanation:
Given data
Tensile stress [tex]\sigma[/tex] = 50 [tex]\frac{N}{mm^{2} }[/tex]
Specific surface energy [tex]\gamma_{s}[/tex] = 0.5 [tex]\frac{J}{m^{2} }[/tex] = 0.5 × [tex]10^{-6}[/tex] [tex]\frac{J}{mm^{2} }[/tex]
Modulus of elasticity E = 80 × [tex]10^{3}[/tex] [tex]\frac{N}{mm^{2} }[/tex]
The critical stress is given by [tex]\sigma_{c}^{2}[/tex] = [tex]\frac{2 E \gamma_{s} }{\pi a}[/tex] ----- (1)
In the limiting case [tex]\sigma[/tex] = [tex]\sigma_{c}[/tex]
⇒ [tex]\sigma^{2}[/tex] = [tex]\frac{2 E \gamma_{s} }{\pi a}[/tex] ------ (2)
Put all the values in above formula we get,
⇒ [tex]50^{2}[/tex] = 2 × 80 × [tex]10^{3}[/tex] × 0.5 × [tex]10^{-6}[/tex] × [tex]\frac{1}{3.14}[/tex] × [tex]\frac{1}{a}[/tex]
⇒ a = 1.02 × [tex]10^{-11}[/tex] mm
This is the value of the maximum length of a surface flaw that is possible without fracture.