The turd is launched at a speed of 72 m/s at an angle of 12 derees above the horizontal. at exactly what time after launch should the ground be covered in a portal to intercept the turd before it hits the ground?

Respuesta :

Answer:

[tex]t \approx 3.053\,s[/tex]

Explanation:

The kinematic equations for the turd are described below:

[tex]x = (72\,\frac{m}{s}\cdot \cos 12^{\textdegree} )\cdot t[/tex]

[tex]y = (72\,\frac{m}{s}\cdot \sin 12^{\textdegree})\cdot t - \frac{1}{2}\cdot (9.807\,\frac{m}{s^{2}} )\cdot t^{2}[/tex]

The maximum horizontal distance coincides with minimum height, then:

[tex](72\,\frac{m}{s}\cdot \sin 12^{\textdegree})\cdot t - \frac{1}{2}\cdot (9.807\,\frac{m}{s^{2}} )\cdot t^{2}= 0[/tex]

Whose roots are:

[tex]t_{1} \approx 3.053\,s[/tex]

[tex]t_{2} = 0\,s[/tex]

First root is related to the maximum horizontal, whereas the other one has to do with initial position of the turd. The needed time is:

[tex]t \approx 3.053\,s[/tex]

ACCESS MORE