Answer:
[tex]t \approx 3.053\,s[/tex]
Explanation:
The kinematic equations for the turd are described below:
[tex]x = (72\,\frac{m}{s}\cdot \cos 12^{\textdegree} )\cdot t[/tex]
[tex]y = (72\,\frac{m}{s}\cdot \sin 12^{\textdegree})\cdot t - \frac{1}{2}\cdot (9.807\,\frac{m}{s^{2}} )\cdot t^{2}[/tex]
The maximum horizontal distance coincides with minimum height, then:
[tex](72\,\frac{m}{s}\cdot \sin 12^{\textdegree})\cdot t - \frac{1}{2}\cdot (9.807\,\frac{m}{s^{2}} )\cdot t^{2}= 0[/tex]
Whose roots are:
[tex]t_{1} \approx 3.053\,s[/tex]
[tex]t_{2} = 0\,s[/tex]
First root is related to the maximum horizontal, whereas the other one has to do with initial position of the turd. The needed time is:
[tex]t \approx 3.053\,s[/tex]