Answer: The mass of morphine is 0.059 grams
Explanation:
To calculate the number of moles for given molarity, we use the equation:
[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}\times 1000}{\text{Volume of solution (in mL)}}[/tex]
Molarity of sulfuric acid solution = 0.0116 M
Volume of solution = 8.92 mL
Putting values in above equation, we get:
[tex]0.0166M=\frac{\text{Moles of sulfuric acid}\times 1000}{8.92}\\\\\text{Moles of sulfuric acid}=\frac{0.0116\times 8.92}{1000}=1.035\times 10^{-4}mol[/tex]
The given chemical equation follows:
[tex]2C_{17}H_{19}NO_3+H_2SO_4\rightarrow \text{Product}[/tex]
By Stoichiometry of the reaction:
1 moles of sulfuric acid reacts with 2 moles of morphine
So, [tex]1.035\times 10^{-4}mol[/tex] of sulfuric acid will react with = [tex]\frac{2}{1}\times 1.035\times 10^{-4}=2.07\times 10^{-4}mol[/tex]
To calculate the mass of morphine for given number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]
Molar mass of morphine = 285.34 g/mol
Moles of morphine = [tex]2.07\times 10^{-4}mol[/tex]
Putting values in above equation, we get:
[tex]2.07\times 10^{-4}mol=\frac{\text{Mass of morphine}}{285.34}\\\\\text{Mass of morphine}=(2.07\times 10^{-4}mol\times 285.34g/mol)=0.059g[/tex]
Hence, the mass of morphine is 0.059 grams