Answer:
[tex]W_f=-62460\ J[/tex]
Explanation:
Given that
mass of the car ,m = 120 kg
Radius ,R= 12 m
Speed at the bottom , u = 25 m/s
Speed at top ,v= 8 m/s
We know that
Work done by all the forces = Change in the kinetic energy
Work done by gravity + Work done by friction =Change in the kinetic energy
By taking point A as reference
[tex]m g \times (2R) + W_f=\dfrac{1}{2}mv^2-\dfrac{1}{2}mu^2[/tex]
Now by putting the values in the above equation we get
[tex]120\times 10\times 2\times 12+ W_f=\dfrac{1}{2}\times 120\times 8^2-\dfrac{1}{2}\times 120\times 25^2[/tex]
[tex]W_f=\dfrac{1}{2}\times 120\times 8^2-\dfrac{1}{2}\times 120\times 25^2-120\times 10\times 2\times 12\ J[/tex]
[tex]W_f=-62460\ J[/tex]
Therefore the work done by friction force will be -62460 J.