Use the given values of n and p to find the minimum usual value μ−2σ and the maximum usual value μ+2σ. Round to the nearest hundredth unless otherwise noted. n=1139​; p=0.96

Respuesta :

Answer:

μ−2σ = 1,089.26

μ+2σ = 1,097.62

Step-by-step explanation:

The standard deviation of a sample of size 'n' and proportion 'p' is:

[tex]\sigma=\sqrt{\frac{p*(1-p)}{n} }[/tex]

If n=1139 and p =0.96, the standard deviation is:

[tex]\sigma=\sqrt{\frac{p*(1-p)}{n}}\\\sigma = 0.001836[/tex]

The minimum and maximum usual values are:

[tex]\mu-2\sigma = (p-2\sigma)*n\\\mu+2\sigma = (p+2\sigma)*n[/tex]

[tex]\mu-2\sigma = (0.96-2*0.001836)*1139\\\mu-2\sigma = 1,089.26\\\mu+2\sigma = (0.96+2*0.001836)*1139\\\mu+2\sigma = 1,097.62[/tex]

ACCESS MORE