Answer:
μ−2σ = 1,089.26
μ+2σ = 1,097.62
Step-by-step explanation:
The standard deviation of a sample of size 'n' and proportion 'p' is:
[tex]\sigma=\sqrt{\frac{p*(1-p)}{n} }[/tex]
If n=1139 and p =0.96, the standard deviation is:
[tex]\sigma=\sqrt{\frac{p*(1-p)}{n}}\\\sigma = 0.001836[/tex]
The minimum and maximum usual values are:
[tex]\mu-2\sigma = (p-2\sigma)*n\\\mu+2\sigma = (p+2\sigma)*n[/tex]
[tex]\mu-2\sigma = (0.96-2*0.001836)*1139\\\mu-2\sigma = 1,089.26\\\mu+2\sigma = (0.96+2*0.001836)*1139\\\mu+2\sigma = 1,097.62[/tex]