Answer:
The rate of change of the length of the diagonal [tex]R[/tex] is [tex]$\frac{dR}{dt} =\frac{\sqrt{21} }{21} \:cm/min$[/tex]
Step-by-step explanation:
For the box of length [tex]L[/tex], width [tex]w[/tex], and height [tex]h[/tex], the length of the diagonal [tex]R[/tex] is given by
[tex]R^2 = L^2+w^2+h^2[/tex],
Taking the time derivative of both sides we get:
[tex]$\frac{dR^2}{dt} =\frac{dL^2}{dt}+\frac{dw^2}{dt} +\frac{dh^2}{dt}$[/tex]
since for any function [tex]f(x)[/tex]
[tex]\dfrac{df(t)^2}{dt} = 2f(t)\dfrac{df(t)}{dt}[/tex],
our equation becomes
[tex]$2R\frac{dR}{dt} =2L\frac{dL}{dt}+2w\frac{dw}{dt} +2h\frac{dh}{dt}$[/tex]
[tex]$\boxed{(1).\:R\frac{dR}{dt} =L\frac{dL}{dt}+w\frac{dw}{dt} +h\frac{dh}{dt}.}$[/tex]
Now, at a certain time when [tex]L =1, \:w =2,\; h = 4[/tex], the length of the diagonal is
[tex]R^2 = 1+2^2+4^2[/tex]
[tex]R = \sqrt{21}[/tex],
and since
[tex]\dfrac{dL}{dt} = 3cm/min[/tex]
[tex]\dfrac{dw}{dt} = 3cm/min[/tex]
[tex]\dfrac{dh}{dt} = -2cm/min[/tex]
equation (1) becomes
[tex]$\sqrt{21} \frac{dR}{dt} =(1)(3cm/min)+(2)(3cm/min) +(4)(-2cm/min)$[/tex]
[tex]$\sqrt{21} \frac{dR}{dt} =[3+6 +(-8)]\:cm/min$[/tex]
[tex]$ \frac{dR}{dt} =\frac{1}{\sqrt{21} } \:cm/min$[/tex]
[tex]$\boxed{ \frac{dR}{dt} =\frac{\sqrt{21} }{21} \:cm/min}$[/tex]
or [tex]0.23cm/min.[/tex]