Answer:
0.75 feet per second.
Step-by-step explanation:
Please find the attachment.
We have been given that a 25-ft ladder is leaning against a wall. We can see from the attachment that ladder forms a right triangle with respect to wall and ground.
So we can set a Pythagoras theorem as:
[tex]x^2+y^2=25^2[/tex]
[tex]x^2+y^2=625[/tex]
Now, we need to find the derivative of above equation with respect to time.
[tex]2x\cdot \frac{dx}{dt}+2y\cdot \frac{dy}{dt}=0[/tex]
Since the adder is moving toward the wall at a rate of 1 ft/sec for 5 sec, so x after 5 seconds would be: [tex]20-1(5)=20-5=15[/tex]
Let us solve for y using Pythagoras theorem.
[tex]y^2+15^2=25^2[/tex]
[tex]y^2+225=625[/tex]
[tex]y^2=625-225[/tex]
[tex]y^2=400[/tex]
Take positive square root:
[tex]\sqrt{y^2}=\sqrt{400}[/tex]
[tex]y=20[/tex]
Upon substituting our given values in derivative equation, we will get:
[tex]2x\cdot \frac{dx}{dt}+2y\cdot \frac{dy}{dt}=0[/tex]
[tex]2(15)\cdot(-1)+2(20)\cdot \frac{dy}{dt}=0[/tex]
[tex]-30+40\cdot \frac{dy}{dt}=0[/tex]
[tex]40\cdot \frac{dy}{dt}=30[/tex]
[tex]\frac{dy}{dt}=\frac{30}{40}[/tex]
[tex]\frac{dy}{dt}=0.75[/tex]
Therefore, the ladder is moving up at a rate of 0.75 feet per second.