Answer:
x2=0.732m
Explanation:
We can calculate the spring constant using the equilibrium equation of the block m1. Since the spring is in equilibrium, we can say that the acceleration of the block is equal to zero. So, its equilibrium equation is:
[tex]m_1g-k\Delta x_1=0\\\\\implies k=\frac{m_1g}{\Delta x_1}\\\\k=\frac{(7.5kg)(9.8m/s^{2})}{0.84m-0.69m}=490N/m[/tex]
Then using the equilibrium equation of the block m2, we have:
[tex]m_2g-k\Delta x_2=0\\\\\\implies x_2=x_0+\frac{m_2g}{k} \\x_2=0.69m+\frac{(2.1kg)(9.8m/s^{2})}{490N/m}= 0.732m[/tex]
In words, the lenght x2 of the spring when the m2 block is hung from it, is 0.732m.