Respuesta :
Answer:
a) [tex]U_{e} = 3 \times 10^{10}\,J[/tex], b) [tex]v \approx 7745.967\,\frac{m}{s}[/tex]
Explanation:
a) The potential energy is:
[tex]U_{e} = Q \cdot \Delta V[/tex]
[tex]U_{e} = (30\,C)\cdot (1.0\times 10^{9}\,V)[/tex]
[tex]U_{e} = 3 \times 10^{10}\,J[/tex]
b) Maximum final speed:
[tex]U_{e} = \frac{1}{2}\cdot m \cdot v^{2}\\v = \sqrt{\frac{2\cdot U_{e}}{m} }[/tex]
The final speed is:
[tex]v=\sqrt{\frac{2\cdot (3 \times 10^{10}\,J)}{1000\,kg} }[/tex]
[tex]v \approx 7745.967\,\frac{m}{s}[/tex]
The change in the energy transferred or potential energy is 3 x 10¹⁰ J.
The final speed of the charge released is 7745.97 m/s.
Change in energy transferred
The change in the energy transferred or potential energy is calculated as follows;
U = QV
U = 30 x 1 x 10⁹
U = 3 x 10¹⁰ J
Speed of the charge released
The speed of the charge released is calculated by applying law of conservation of energy.
[tex]K.E = U\\\\\frac{1}{2} mv^2 = U\\\\v= \sqrt{\frac{2U}{m} } \\\\v = \sqrt{\frac{2\times 3\times 10^{10} }{1000} }\\\\v = 7745.97 \ m/s[/tex]
Learn more about potential energy here: https://brainly.com/question/1242059