Answer:
[tex]p_{5} (t) = x^{5} - 5\cdot x^{4} + 3\cdot x^{3} +9\cdot x^{2}[/tex], for [tex]r_{1} = 0[/tex]
Step-by-step explanation:
The general form of quintic-order polynomial is:
[tex]p_{5}(t) = a\cdot x^{5} + b\cdot x^{4} + c\cdot x^{3} + d\cdot x^{2} + e \cdot x + f[/tex]
According to the statement of the problem, the polynomial has the following roots:
[tex]p_{5} (t) = (x - r_{1})\cdot (x-3)^{2}\cdot x^{2} \cdot (x+1)[/tex]
Then, some algebraic handling is done to expand the polynomial:
[tex]p_{5} (t) = (x - r_{1}) \cdot (x^{3}-6\cdot x^{2}+9\cdot x) \cdot (x+1)\\p_{5} (t) = (x - r_{1}) \cdot (x^{4}-5\cdot x^{3} + 3 \cdot x^{2} + 9 \cdot x)[/tex]
[tex]p_{5} (t) = x^{5} - (5+r_{1})\cdot x^{4} + (3 + 5\cdot r_{1})\cdot x^{3} +(9-3\cdot r_{1})\cdot x^{2} - 9 \cdot r_{1}\cdot x[/tex]
If [tex]r_{1} = 0[/tex], then:
[tex]p_{5} (t) = x^{5} - 5\cdot x^{4} + 3\cdot x^{3} +9\cdot x^{2}[/tex]