An insulated rigid tank is divided into two equal parts by a partition. Initially, one part contains 4 kg of an ideal gas at 700 kPa and 59°C, and the other part is evacuated. The partition is now removed, and the gas expands into the entire tank. Determine the final temperature and pressure in the tank.

Respuesta :

Answer:

[tex]P_2=350\ kPa[/tex]

[tex]T_2=59^{\circ}\ C[/tex]

Explanation:

Given that

mass , m = 4 kg

Initial pressure ,[tex]P_1=700\ kPa[/tex]

Initial temperature ,[tex]T_1=59^{\circ}\ C[/tex]

The volume of rigid tanks are same

[tex]V_1=V[/tex]

[tex]V_2=2 V[/tex]

Let's take final temperature[tex] =T_2[/tex]

Given that tank is insulated that is why heat transfer in the tank will be zero.

By using energy balance

[tex]E_{in}-E_{out}=\Delta U[/tex]

[tex]\Delta U[/tex]= Change in the internal energy of the gas

[tex]0 = m C_V(T_2-T_1[/tex])           ( Cv=Specific heat capacity at constant volume)

[tex]0 = T_2-T_1[/tex]

Therefore [tex]T_1=T_2[/tex]

[tex]T_2=59^{\circ}\ C[/tex]

We know that ideal gas equation for gas

P V = m R T

P=pressure ,V=Volume ,m=mass ,R= gas constant ,T=temperature

By using mass conservation

[tex]m=\dfrac{P_1V_1}{RT_1}=\dfrac{P_2V_2}{RT_2}[/tex]

Now by putting the values in the above equation

[tex]\dfrac{700\times V}{RT_1}=\dfrac{P_2\times 2V}{RT_1}[/tex]

[tex]P_2=\dfrac{700}{2}\ kPa[/tex]

[tex]P_2=350\ kPa[/tex]

Therefore the final volume will be 350 kPa and temperature will be 59°C.