Answer:
[tex]P_2=350\ kPa[/tex]
[tex]T_2=59^{\circ}\ C[/tex]
Explanation:
Given that
mass , m = 4 kg
Initial pressure ,[tex]P_1=700\ kPa[/tex]
Initial temperature ,[tex]T_1=59^{\circ}\ C[/tex]
The volume of rigid tanks are same
[tex]V_1=V[/tex]
[tex]V_2=2 V[/tex]
Let's take final temperature[tex] =T_2[/tex]
Given that tank is insulated that is why heat transfer in the tank will be zero.
By using energy balance
[tex]E_{in}-E_{out}=\Delta U[/tex]
[tex]\Delta U[/tex]= Change in the internal energy of the gas
[tex]0 = m C_V(T_2-T_1[/tex]) ( Cv=Specific heat capacity at constant volume)
[tex]0 = T_2-T_1[/tex]
Therefore [tex]T_1=T_2[/tex]
[tex]T_2=59^{\circ}\ C[/tex]
We know that ideal gas equation for gas
P V = m R T
P=pressure ,V=Volume ,m=mass ,R= gas constant ,T=temperature
By using mass conservation
[tex]m=\dfrac{P_1V_1}{RT_1}=\dfrac{P_2V_2}{RT_2}[/tex]
Now by putting the values in the above equation
[tex]\dfrac{700\times V}{RT_1}=\dfrac{P_2\times 2V}{RT_1}[/tex]
[tex]P_2=\dfrac{700}{2}\ kPa[/tex]
[tex]P_2=350\ kPa[/tex]
Therefore the final volume will be 350 kPa and temperature will be 59°C.