Respuesta :
Answer:
The electric field inside the wire will remain the same or constant, while the drift velocity will by a factor of four.
Explanation:
Electron mobility, μ = [tex]\frac{v_d}{E}[/tex]
where
[tex]v_d[/tex] = Drift velocity
E = Electric field
Given that the electric field strength = 1.48 V/m,
Therefore since the electric potential depends on the length of the wire and the attached potential difference, then when the electron mobility is increased 4 times the Electric field E will be the same but the drift velocity will increase four times. That is
4·μ = [tex]\frac{4*v_d}{E}[/tex]
Answer:
Explanation:
Usually, the electron drift velocity in a material is directly proportional to the electric field, which means that the electron mobility is a constant (independent of electric field).
μ × E = Vd
Where,
D = electric field
Vd = drift velocity
μ = electron mobility
μ2 = μ × 4
μ/Vd1 = 4 × μ/Vd2
Vd2 = 4 × Vd1
The electric field is the same but drift velocity increases.