Suppose you have a coffee mug with a circular cross section and vertical sides (uniform radius). What is its inside radius if it holds 375 g of coffee when filled to a depth of 7.50 cm

Respuesta :

Answer:

0.0399 m

Explanation:

We are given that

Mass of coffee=375g=[tex]\frac{375}{1000}=0.375 kg[/tex]

1kg=1000g

Depth=h=7.5 cm=[tex]7.5\times 10^{-2} m[/tex]

[tex]1 cm=10^{-2} m[/tex]

Density of coffee=[tex]\rho=1000kg/m^3[/tex]

We have to find the inside radius  of coffee mug.

We know that

[tex]\rho=\frac{m}{V}[/tex]

Substitute the values

[tex]1000=\frac{0.375}{\pi r^2h}[/tex]

[tex]r^2=\frac{0.375}{1000\times 7.5\times 10^{-2}\times 3.14}[/tex]

By using [tex]\pi=3.14[/tex]

[tex]r=\sqrt{\frac{0.375}{1000\times 7.5\times 10^{-2}\times 3.14}}[/tex]

[tex]r=0.0399 m[/tex]

Hence, the inside radius=0.0399 m