Respuesta :
Answer:
a. data(wages)
plot(wages, type='o', ylab='wages per hour')
Step-by-step explanation:
a. Display and interpret the time series plot for these data.
#take data samples from wages
data(wages)
plot(wages, type='o', ylab='wages per hour')
see others below
b. Use least squares to fit a linear time trend to this time series. Interpret the regression output. Save the standardized residuals from the fit for further analysis.
#linear model
wages.lm = lm(wages~time(wages))
summary(wages.lm) #r square is correct
##
## Call:
## lm(formula = wages ~ time(wages))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.23828 -0.04981 0.01942 0.05845 0.13136
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.490e+02 1.115e+01 -49.24 <2e-16 ***
## time(wages) 2.811e-01 5.618e-03 50.03 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08257 on 70 degrees of freedom
## Multiple R-squared: 0.9728, Adjusted R-squared: 0.9724
## F-statistic: 2503 on 1 and 70 DF, p-value: < 2.2e-16
c. plot(y=rstandard(wages.lm), x=as.vector(time(wages)), type = 'o')
d. #we find Quadratic model trend
wages.qm = lm(wages ~ time(wages) + I(time(wages)^2))
summary(wages.qm)
##
## Call:
## lm(formula = wages ~ time(wages) + I(time(wages)^2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.148318 -0.041440 0.001563 0.050089 0.139839
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8.495e+04 1.019e+04 -8.336 4.87e-12 ***
## time(wages) 8.534e+01 1.027e+01 8.309 5.44e-12 ***
## I(time(wages)^2) -2.143e-02 2.588e-03 -8.282 6.10e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.05889 on 69 degrees of freedom
## Multiple R-squared: 0.9864, Adjusted R-squared: 0.986
## F-statistic: 2494 on 2 and 69 DF, p-value: < 2.2e-16
#time series plot of the standardized residuals
plot(y=rstandard(wages.qm), x=as.vector(time(wages)), type = 'o')
wages.qm = lm(wages ~ time(wages) + I(time(wages)^2))
summary(wages.qm)
##
## Call:
## lm(formula = wages ~ time(wages) + I(time(wages)^2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.148318 -0.041440 0.001563 0.050089 0.139839
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8.495e+04 1.019e+04 -8.336 4.87e-12 ***
## time(wages) 8.534e+01 1.027e+01 8.309 5.44e-12 ***
## I(time(wages)^2) -2.143e-02 2.588e-03 -8.282 6.10e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.05889 on 69 degrees of freedom
## Multiple R-squared: 0.9864, Adjusted R-squared: 0.986
## F-statistic: 2494 on 2 and 69 DF, p-value: < 2.2e-16
e. #time series plot of the standardized residuals
plot(y=rstandard(wages.qm), x=as.vector(time(wages)), type = 'o')