Respuesta :

the height of pyramid let being h

h^2 = 20^2 -12^2 

h = sqrt(400-144) = sqrt256 = 16 feet 

hope this will help you 

Let

l-------> the slant height of the right pyramid

b------> the length side of the square base of the right pyramid

h------> the height of the right pyramid

we know that

Applying the Pythagorean Theorem

[tex]l^{2} =h^{2}+(\frac{b}{2})^{2}[/tex]

Solve for h

[tex]h^{2}=l^{2}-(\frac{b}{2})^{2}[/tex]

in this problem we have

[tex]l=20\ ft\\\frac{b}{2} =\frac{24}{2} =12\ ft[/tex]

Substitute in the formula

[tex]h^{2}=20^{2}-12^{2}[/tex]

[tex]h^{2}=256[/tex]

[tex]h=16\ ft[/tex]

therefore

the answer is

The height of the right pyramid is [tex]16\ ft[/tex]