Respuesta :
the height of pyramid let being h
h^2 = 20^2 -12^2
h = sqrt(400-144) = sqrt256 = 16 feet
hope this will help you
h^2 = 20^2 -12^2
h = sqrt(400-144) = sqrt256 = 16 feet
hope this will help you
Let
l-------> the slant height of the right pyramid
b------> the length side of the square base of the right pyramid
h------> the height of the right pyramid
we know that
Applying the Pythagorean Theorem
[tex]l^{2} =h^{2}+(\frac{b}{2})^{2}[/tex]
Solve for h
[tex]h^{2}=l^{2}-(\frac{b}{2})^{2}[/tex]
in this problem we have
[tex]l=20\ ft\\\frac{b}{2} =\frac{24}{2} =12\ ft[/tex]
Substitute in the formula
[tex]h^{2}=20^{2}-12^{2}[/tex]
[tex]h^{2}=256[/tex]
[tex]h=16\ ft[/tex]
therefore
the answer is
The height of the right pyramid is [tex]16\ ft[/tex]