The spring of constant k = 170 N/m is attached to both the support and the 1.5-kg cylinder, which slides freely on the horizontal guide. If a constant 14-N force is applied to the cylinder at time t = 0 when the spring is undeformed and the system is at rest, determine the velocity of the cylinder when x = 65 mm. Also determine the maximum displacement of the cylinder.

Respuesta :

Answer:

Velocity at 64 mm is 0.532 m/s

Maximum displacement = 0.082 m or 82 mm

Explanation:

The maximum displacement or amplitude is determined by the applied force from Hooke's law

[tex]F = kA[/tex]

[tex]A=\dfrac{F}{k}=\dfrac{14 \text{ N}}{170 \text{ N/m}}=0.082 \text{ m}[/tex]

The velocity at at any point, x, is given by

[tex]v=\sqrt{\dfrac{k}{m}(A^2 - x^2)}[/tex]

m is the mass of the load, here the cylinder.

In fact, the expression [tex]\sqrt{\dfrac{k}{m}}[/tex] represents the angular velocity, [tex]\omega[/tex].

Substituting given values,

[tex]v=\sqrt{\dfrac{170}{1.5}(0.082^2 - 0.065^2)} = 0.532 \text{ m/s}[/tex]